Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
RMD Open ; 10(1)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395454

ABSTRACT

OBJECTIVES: Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease affecting mainly the axial skeleton. Peripheral involvement (arthritis, enthesitis and dactylitis) and extra-musculoskeletal manifestations, including uveitis, psoriasis and bowel inflammation, occur in a relevant proportion of patients. AS is responsible for chronic and severe back pain caused by local inflammation that can lead to osteoproliferation and ultimately spinal fusion. The association of AS with the human leucocyte antigen-B27 gene, together with elevated levels of chemokines, CCL17 and CCL22, in the sera of patients with AS, led us to study the role of CCR4+ T cells in the disease pathogenesis. METHODS: CD8+CCR4+ T cells isolated from the blood of patients with AS (n=76) or healthy donors were analysed by multiparameter flow cytometry, and gene expression was evaluated by RNA sequencing. Patients with AS were stratified according to the therapeutic regimen and current disease score. RESULTS: CD8+CCR4+ T cells display a distinct effector phenotype and upregulate the inflammatory chemokine receptors CCR1, CCR5, CX3CR1 and L-selectin CD62L, indicating an altered migration ability. CD8+CCR4+ T cells expressing CX3CR1 present an enhanced cytotoxic profile, expressing both perforin and granzyme B. RNA-sequencing pathway analysis revealed that CD8+CCR4+ T cells from patients with active disease significantly upregulate genes promoting osteogenesis, a core process in AS pathogenesis. CONCLUSIONS: Our results shed light on a new molecular mechanism by which T cells may selectively migrate to inflammatory loci, promote new bone formation and contribute to the pathological ossification process observed in AS.


Subject(s)
Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Osteogenesis/genetics , T-Lymphocyte Subsets/metabolism , CD8-Positive T-Lymphocytes/metabolism , Inflammation
2.
Brain Behav Immun Health ; 33: 100677, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37701787

ABSTRACT

Increasing evidence has been pointing towards the existence of a bi-directional interplay between mental health condition and immunity. Data collected during the COVID-19 outbreak suggest that depressive symptoms may impact the production of antibodies against SARS-CoV-2, while a previous infection could affect the immune response and cause neuropsychological disturbances. A prospective observational study was designed to investigate the association between mental health conditions and immune response over time. We analyzed the mental health at baseline and the antibodies before and after immunization with the COVID-19 mRNA vaccine in a cohort of healthcare professionals in southern Switzerland. One-hundred and six subjects were enrolled. Anxiety, distress and depression correlated to each other. There were no correlations between the mentioned variables and the vaccine induced IgG antibodies against the receptor binding domain (RBD) of the spike protein. For those who had a previous COVID-19 infection, the antibodies increased according to the grade of depression. For those who did not, the anti-RBD IgG levels remained similar when comparing presence or absence of depression symptoms. Our results show that previous SARS-CoV-2 natural infection in subjects with mental health conditions enhances the immune response to COVID-19 mRNA vaccination. The correlation between immune response to COVID-19 vaccination, a previous exposure to the virus, and symptoms of mood disorders, makes it necessary to explore the direction of the causality between immune response and depressive symptoms.

3.
Front Immunol ; 14: 1176619, 2023.
Article in English | MEDLINE | ID: mdl-37251376

ABSTRACT

Leukocyte trafficking is mainly governed by chemokines, chemotactic cytokines, which can be concomitantly produced in tissues during homeostatic conditions or inflammation. After the discovery and characterization of the individual chemokines, we and others have shown that they present additional properties. The first discoveries demonstrated that some chemokines act as natural antagonists on chemokine receptors, and prevent infiltration of leukocyte subsets in tissues. Later on it was shown that they can exert a repulsive effect on selective cell types, or synergize with other chemokines and inflammatory mediators to enhance chemokine receptors activities. The relevance of the fine-tuning modulation has been demonstrated in vivo in a multitude of processes, spanning from chronic inflammation to tissue regeneration, while its role in the tumor microenvironment needs further investigation. Moreover, naturally occurring autoantibodies targeting chemokines were found in tumors and autoimmune diseases. More recently in SARS-CoV-2 infection, the presence of several autoantibodies neutralizing chemokine activities distinguished disease severity, and they were shown to be beneficial, protecting from long-term sequelae. Here, we review the additional properties of chemokines that influence cell recruitment and activities. We believe these features need to be taken into account when designing novel therapeutic strategies targeting immunological disorders.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Chemokines/metabolism , Inflammation , Receptors, Chemokine/metabolism , Autoantibodies
4.
Nat Immunol ; 24(4): 604-611, 2023 04.
Article in English | MEDLINE | ID: mdl-36879067

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Autoantibodies , Post-Acute COVID-19 Syndrome , Chemokines
5.
Sci Immunol ; 8(81): eade0958, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36701425

ABSTRACT

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Epitopes , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Neutralization Tests
6.
J Biol Eng ; 17(1): 5, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694208

ABSTRACT

Cell migration is a pivotal biological process, whose dysregulation is found in many diseases including inflammation and cancer. Advances in microscopy technologies allow now to study cell migration in vitro, within engineered microenvironments that resemble in vivo conditions. However, to capture an entire 3D migration chamber for extended periods of time and with high temporal resolution, images are generally acquired with low resolution, which poses a challenge for data analysis. Indeed, cell detection and tracking are hampered due to the large pixel size (i.e., cell diameter down to 2 pixels), the possible low signal-to-noise ratio, and distortions in the cell shape due to changes in the z-axis position. Although fluorescent staining can be used to facilitate cell detection, it may alter cell behavior and it may suffer from fluorescence loss over time (photobleaching).Here we describe a protocol that employs an established deep learning method (U-NET), to specifically convert transmitted light (TL) signal from unlabeled cells imaged with low resolution to a fluorescent-like signal (class 1 probability). We demonstrate its application to study cancer cell migration, obtaining a significant improvement in tracking accuracy, while not suffering from photobleaching. This is reflected in the possibility of tracking cells for three-fold longer periods of time. To facilitate the application of the protocol we provide WID-U, an open-source plugin for FIJI and Imaris imaging software, the training dataset used in this paper, and the code to train the network for custom experimental settings.

7.
bioRxiv ; 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36482967

ABSTRACT

Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera , including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae , including SARS-CoV-2 variants. One sentence summary: Broadly cross-reactive antibodies that protect from SARS-CoV-2 variants are revealed by virus coldspot-driven discovery.

8.
bioRxiv ; 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-35664993

ABSTRACT

Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 infection and autoimmune disorders, but they target different chemokines than those in COVID-19. Monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential. One-Sentence Summary: Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and predict lack of long COVID.

10.
Nat Immunol ; 23(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: mdl-35102342

ABSTRACT

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Subject(s)
COVID-19/immunology , Immunity, Humoral , Receptors, Pattern Recognition/immunology , SARS-CoV-2/immunology , Animals , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Complement Activation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Glycosylation , HEK293 Cells , Host-Pathogen Interactions , Humans , Male , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Mannose-Binding Lectin/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Polymorphism, Genetic , Protein Binding , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
11.
Sci Rep ; 11(1): 21697, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737366

ABSTRACT

IKKα and IKKß are essential kinases for activating NF-κB transcription factors that regulate cellular differentiation and inflammation. By virtue of their small size, chemokines support the crosstalk between cartilage and other joint compartments and contribute to immune cell chemotaxis in osteoarthritis (OA). Here we employed shRNA retroviruses to stably and efficiently ablate the expression of each IKK in primary OA chondrocytes to determine their individual contributions for monocyte chemotaxis in response to chondrocyte conditioned media. Both IKKα and IKKß KDs blunted both the monocyte chemotactic potential and the protein levels of CCL2/MCP-1, the chemokine with the highest concentration and the strongest association with monocyte chemotaxis. These findings were mirrored by gene expression analysis indicating that the lowest levels of CCL2/MCP-1 and other monocyte-active chemokines were in IKKαKD cells under both basal and IL-1ß stimulated conditions. We find that in their response to IL-1ß stimulation IKKαKD primary OA chondrocytes have reduced levels of phosphorylated NFkappaB p65pSer536 and H3pSer10. Confocal microscopy analysis revealed co-localized p65 and H3pSer10 nuclear signals in agreement with our findings that IKKαKD effectively blunts their basal level and IL-1ß dependent increases. Our results suggest that IKKα could be a novel OA disease target.


Subject(s)
I-kappa B Kinase/metabolism , Interleukin-1beta/metabolism , Monocytes/metabolism , Cells, Cultured , Chemokine CCL2/metabolism , Chemokines/immunology , Chemokines/metabolism , Chemotaxis/physiology , Chondrocytes/metabolism , Female , Humans , I-kappa B Kinase/physiology , Inflammation , Interleukin-1beta/physiology , Male , Middle Aged , NF-kappa B/metabolism , Osteoarthritis/metabolism , Phosphorylation , Protein Serine-Threonine Kinases , Signal Transduction/physiology , Transcription Factor RelA
12.
J Med Chem ; 64(18): 13439-13450, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34510899

ABSTRACT

During inflammatory reactions, the production and release of chemotactic factors guide the recruitment of selective leukocyte subpopulations. The alarmin HMGB1 and the chemokine CXCL12, both released in the microenvironment, can form a heterocomplex, which exclusively acts on the chemokine receptor CXCR4, enhancing cell migration, and in some pathological conditions such as rheumatoid arthritis exacerbates the immune response. An excessive cell influx at the inflammatory site can be diminished by disrupting the heterocomplex. Here, we report the computationally driven identification of the first peptide (HBP08) binding HMGB1 and selectively inhibiting the activity of the CXCL12/HMGB1 heterocomplex. Furthermore, HBP08 binds HMGB1 with the highest affinity reported so far (Kd of 0.8 ± 0.4 µM). The identification of this peptide represents an important step toward the development of innovative pharmacological tools for the treatment of severe chronic inflammatory conditions characterized by an uncontrolled immune response.


Subject(s)
Chemokine CXCL12/antagonists & inhibitors , HMGB1 Protein/antagonists & inhibitors , Peptides/pharmacology , Protein Binding/drug effects , Amino Acid Sequence , Animals , Cell Line , Cell Movement/drug effects , Chemokine CXCL12/metabolism , HMGB1 Protein/metabolism , Humans , Mice , Molecular Docking Simulation , Peptides/metabolism , Receptors, CXCR4/metabolism
13.
Eur J Immunol ; 51(8): 1980-1991, 2021 08.
Article in English | MEDLINE | ID: mdl-34060652

ABSTRACT

High mobility group box-1 protein (HMGB1) is an alarmin that, once released, promotes inflammatory responses, alone and as a complex with the chemokine CXCL12. Here, we report that the HMGB1-CXCL12 complex plays an essential role also in homeostasis by controlling the migration of B lymphocytes. We show that extracellular HMGB1 is critical for the CXCL12-dependent egress of B cells from the Peyer's patches (PP). This promigratory function of the complex was restricted to the PPs, since HMGB1 was not required for B-cell migratory processes in other locations. Accordingly, we detected higher constitutive levels of the HMGB1-CXCL12 complex in PPs than in other lymphoid organs. HMGB1-CXCL12 in vivo inhibition was associated with a reduced basal IgA production in the gut. Collectively, our results demonstrate a role for the HMGB1-CXCL12 complex in orchestrating B-cell trafficking in homeostasis, and provide a novel target to control lymphocyte migration in mucosal immunity.


Subject(s)
B-Lymphocytes/metabolism , Chemokine CXCL12/metabolism , HMGB1 Protein/metabolism , Immunity, Mucosal/immunology , Peyer's Patches/metabolism , Animals , B-Lymphocytes/immunology , Chemokine CXCL12/immunology , Chemotaxis, Leukocyte/immunology , HMGB1 Protein/immunology , Homeostasis/immunology , Mice , Mice, Inbred C57BL , Peyer's Patches/immunology
14.
Lancet Reg Health Eur ; 1: 100013, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34173621

ABSTRACT

BACKGROUND: Hospital healthcare workers (HCW), in particular those involved in the clinical care of COVID-19 cases, are presumably exposed to a higher risk of acquiring the disease than the general population. METHODS: Between April 16 and 30, 2020 we conducted a prospective, SARS-CoV-2 seroprevalence study in HCWs in Southern Switzerland. Participants were hospital personnel with varying COVID-19 exposure risk depending on job function and working site. They provided personal information (including age, sex, occupation, and medical history) and self-reported COVID-19 symptoms. Odds ratio (OR) of seropositivity to IgG antibodies was estimated by univariate and multivariate logistic regressions. FINDINGS: Among 4726 participants, IgG antibodies to SARS-CoV-2 were detected in 9.6% of the HCWs. Seropositivity was higher among HCWs working on COVID-19 wards (14.1% (11.9-16.5)) compared to other hospital areas at medium (10.7% (7.6-14.6)) or low risk exposure (7.3% (6.4-8.3)). OR for high vs. medium wards risk exposure was 1.42 (0.91-2.22), P = 0.119, and 1.98 (1.55-2.53), P<0.001 for high vs. low wards risk exposure. The same was for true for doctors and nurses (10.1% (9.0-11.3)) compared to other employees at medium (7.1% (4.8-10.0)) or low risk exposure (6.6% (5.0-8.4)). OR for high vs. medium profession risk exposure was 1.37 (0.89-2.11), P = 0.149, and 1.75 (1.28-2.40), P = 0.001 for high vs. low profession risk exposure. Moreover, seropositivity was higher among HCWs who had household exposure to COVID-19 cases compared to those without (18.7% (15.3-22.5) vs. 7.7% (6.9-8.6), OR 2.80 (2.14-3.67), P<0.001). INTERPRETATION: SARS-CoV-2 antibodies are detectable in up to 10% of HCWs from acute care hospitals in a region with high incidence of COVID-19 in the weeks preceding the study. HCWs with exposure to COVID-19 patients have only a slightly higher absolute risk of seropositivity compared to those without, suggesting that the use of PPE and other measures aiming at reducing nosocomial viral transmission are effective. Household contact with known COVID-19 cases represents the highest risk of seropositivity. FUNDING: Henry Krenter Foundation, Ente Ospedaliero Cantonale and Vir Biotechnology.

15.
Front Immunol ; 11: 550824, 2020.
Article in English | MEDLINE | ID: mdl-33072091

ABSTRACT

The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and ß-arrestins-mediated signaling pathways to sustain chemotaxis. We generated ß-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily ß-arrestin1 dependent, while chemotaxis requires both ß-arrestin1 and ß-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on ß-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the ß-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts.


Subject(s)
Chemokine CXCL12/metabolism , HMGB1 Protein/metabolism , Receptors, CXCR4/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Actins/chemistry , Actins/metabolism , CRISPR-Cas Systems , Chemotaxis , Gene Editing , Gene Knockdown Techniques , HeLa Cells , Humans , Multiprotein Complexes/metabolism , Protein Binding , Protein Multimerization , Protein Transport , beta-Arrestin 1/genetics , beta-Arrestin 2/genetics
16.
Nat Commun ; 11(1): 3677, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699279

ABSTRACT

Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients.


Subject(s)
B-Lymphocytes/immunology , Cellular Microenvironment/immunology , Chemokine CXCL13/metabolism , Dendritic Cells, Follicular/immunology , Adaptive Immunity , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cathepsin B/genetics , Cathepsin B/metabolism , Cell Line , Chemokine CXCL13/immunology , Computer Simulation , Dendritic Cells, Follicular/cytology , Dendritic Cells, Follicular/metabolism , Extracellular Matrix/metabolism , Humans , Mice , Mice, Knockout , Microscopy, Fluorescence , Models, Biological , Palatine Tonsil/cytology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Stromal Cells/immunology , Stromal Cells/metabolism
17.
Front Immunol ; 11: 720, 2020.
Article in English | MEDLINE | ID: mdl-32391018

ABSTRACT

Chemokines are essential for guiding cell migration. Atypical chemokine receptors (ACKRs) contribute to the cell migration process by binding, internalizing and degrading local chemokines, which enables the formation of confined gradients. ACKRs are heptahelical membrane spanning molecules structurally related to G-protein coupled receptors (GPCRs), but seem to be unable to signal through G-proteins upon ligand binding. ACKR4 internalizes the chemokines CCL19, CCL21, and CCL25 and is best known for shaping functional CCL21 gradients. Ligand binding to ACKR4 has been shown to recruit ß-arrestins that has led to the assumption that chemokine scavenging relies on ß-arrestin-mediated ACKR4 trafficking, a common internalization route taken by class A GPCRs. Here, we show that CCL19, CCL21, and CCL25 readily recruited ß-arrestin1 and ß-arrestin2 to human ACKR4, but found no evidence for ß-arrestin-dependent or independent ACKR4-mediated activation of the kinases Erk1/2, Akt, or Src. However, we demonstrate that ß-arrestins interacted with ACKR4 in the steady-state and contributed to the spontaneous trafficking of the receptor in the absence of chemokines. Deleting the C-terminus of ACKR4 not only interfered with the interaction of ß-arrestins, but also with the uptake of fluorescently labeled cognate chemokines. We identify the GPCR kinase GRK3, and to a lesser extent GRK2, but not GRK4, GRK5, and GRK6, to be recruited to chemokine-stimulated ACKR4. We show that GRK3 recruitment proceded the recruitment of ß-arrestins upon ACKR4 engagement and that GRK2/3 inhibition partially interfered with steady-state interaction and chemokine-driven recruitment of ß-arrestins to ACKR4. Overexpressing ß-arrestin2 accelerated the uptake of fluorescently labeled CCL19, indicating that ß-arrestins contribute to the chemokine scavenging activity of ACKR4. By contrast, cells lacking ß-arrestins were still capable to take up fluorescently labeled CCL19 demonstrating that ß-arrestins are dispensable for chemokine scavenging by ACKR4.


Subject(s)
Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Chemokines, CC/metabolism , G-Protein-Coupled Receptor Kinase 3/metabolism , Receptors, CCR/metabolism , Signal Transduction/genetics , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , HeLa Cells , Humans , Plasmids/genetics , Plasmids/metabolism , Protein Binding/genetics , Receptors, CCR/genetics , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Transfection , beta-Arrestin 2/genetics
18.
Comput Struct Biotechnol J ; 17: 886-894, 2019.
Article in English | MEDLINE | ID: mdl-31333815

ABSTRACT

High-mobility Group Box 1 (HMGB1) is an abundant protein present in all mammalian cells and involved in several processes. During inflammation or tissue damage, HMGB1 is released in the extracellular space and, depending on its redox state, can form a heterocomplex with CXCL12. The heterocomplex acts exclusively via the chemokine receptor CXCR4 enhancing leukocyte recruitment. Here, we used multi-microsecond molecular dynamics (MD) simulations to elucidate the effect of the disulfide bond on the structure and dynamics of HMGB1. The results of the MD simulations show that the presence or lack of the disulfide bond between Cys23 and Cys45 modulates the conformational space explored by HMGB1, making the reduced protein more suitable to form a complex with CXCL12.

19.
Front Immunol ; 9: 2185, 2018.
Article in English | MEDLINE | ID: mdl-30319638

ABSTRACT

Infiltrating immune cells are a key component of the tumor microenvironment and play central roles in dictating tumor fate, either promoting anti-tumor immune responses, or sustaining tumor growth, angiogenesis and metastasis. A distinctive microenvironment is often associated to different tumor types, with substantial differences in prognosis. The production of a variety of chemotactic factors by cancer and stromal cells orchestrates cell recruitment, local immune responses or cancer progression. In the last decades, different studies have highlighted how chemotactic cues, and in particular chemokines, can act as natural antagonists or induce synergistic effects on selective receptors by forming heterocomplexes, thus shaping migratory responses of immune cells. A variety of chemokines has been described to be able to form heterocomplexes both in vitro and in vivo under inflammatory conditions, but nowadays little is known on the presence and relevance of heterocomplexes in the tumor microenvironment. In recent years, the alarmin HMGB1, which can be massively released within the tumor microenvironment, has also been described to form a complex with the chemokine CXCL12 enhancing CXCR4-mediated signaling, thus providing an additional regulation of the activity of the chemokine system. In the present review, we will discuss the current knowledge on the synergy occurring between chemokines or inflammatory molecules, and describe the multiple functions exerted by the chemokines expressed in the tumor microenvironment, pointing our attention to the synergism as a possible modulator of tumor suppression or progression.


Subject(s)
Chemokine CXCL12/immunology , HMGB1 Protein/immunology , Neoplasms/immunology , Protein Multimerization/immunology , Tumor Microenvironment/immunology , Chemokine CXCL12/metabolism , Chemotaxis/immunology , Disease Progression , HMGB1 Protein/metabolism , Humans , Leukocytes/immunology , Leukocytes/metabolism , Neoplasms/pathology , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Signal Transduction/immunology
20.
Front Immunol ; 9: 2118, 2018.
Article in English | MEDLINE | ID: mdl-30283452

ABSTRACT

Chemokine synergy-inducing molecules are emerging as regulating factors in cell migration. The alarmin HMGB1, in its reduced form, can complex with CXCL12 enhancing its activity on monocytes via the chemokine receptor CXCR4, while the form containing a disulfide bond, by binding to TLR2 or TLR4, initiates a cascade of events leading to production of cytokines and chemokines. So far, the possibility that the CXCL12/HMGB1 heterocomplex could be maintained in chronic inflammation was debated, due to the release of reactive oxygen species. Therefore, we have assessed if the heterocomplex could remain active in Rheumatoid Arthritis (RA) and its relevance in the disease assessment. Monocytes from RA patients with active disease require a low concentration of HMGB1 to enhance CXCL12-induced migration, in comparison to monocytes from patients in clinical remission or healthy donors. The activity of the heterocomplex depends on disease activity, on the COX2 and JAK/STAT pathways, and is determined by the redox potential of the microenvironment. In RA, the presence of an active thioredoxin system correlates with the enhanced cell migration, and with the presence of the heterocomplex in the synovial fluid. The present study highlights how, in an unbalanced microenvironment, the activity of the thioredoxin system plays a crucial role in sustaining inflammation. Prostaglandin E2 stimulation of monocytes from healthy donors is sufficient to recapitulate the response observed in patients with active RA. The activation of mechanisms counteracting the oxidative stress in the extracellular compartment preserves HMGB1 in its reduced form, and contributes to fuel the influx of inflammatory cells. Targeting the heterocomplex formation and its activity could thus be an additional tool for dampening the inflammation sustained by cell recruitment, for those patients with chronic inflammatory conditions who poorly respond to current therapies.


Subject(s)
Arthritis, Rheumatoid/metabolism , Cell Movement/drug effects , Chemokine CXCL12/pharmacology , HMGB1 Protein/pharmacology , Monocytes/drug effects , Adult , Aged , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cell Movement/immunology , Cells, Cultured , Dinoprostone/pharmacology , Drug Synergism , Female , Humans , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Oxidation-Reduction , Protein Binding/drug effects , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...